Helium nuclei at the surface of heavy nuclei discovered

Research team confirms a new nuclear property predicted by theory

Scientists are able to selectively knockout nucleons and preformed nuclear clusters from atomic nuclei using high-energy proton beams. In an experiment performed at the Research Center for Nuclear Physics (RCNP) in Osaka in Japan, the existence of preformed helium nuclei at the surface of several tin isotopes could be identified in a reaction. The results confirm a theory, which predicts the formation of helium clusters in low-density nuclear matter and at the surface of heavy nuclei. A research team, lead by scientists from TU Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research, and from the RIKEN Nishina Center for Accelerator-Based Science, discuss the new findings in a contribution to the latest issue of the journal “Science”.

Am GRAND RAIDEN Spektrometer des RCNP fanden die Experimente statt.
The experiments took place at the RCNP’s GRAND RAIDEN spectrometer.

The strong interaction binds neutrons and protons together to atomic nuclei. The knowledge of properties of nuclei and their theoretical description is basis for our understanding of nuclear matter and the development of the universe. Laboratory-based studies of reactions between atomic nuclei provide means to explore nuclear properties. These experiments allow to test and verify theories that describe properties of extended nuclear matter at different conditions, as present, for instance, in neutron stars in the universe.

Several theories predict the formation of nuclear clusters like helium nuclei in dilute nuclear matter. This effect is expected to occur at densities significantly lower than saturation density of nuclear matter, as present in the inner part of heavy nuclei. A theory developed in Darmstadt by Dr. Stefan Typel predicts that such a condensation of helium nuclei should also occur at the surface of heavy nuclei. Goal of the experiment, which is presented in the latest issue of “Science”, was the verification of this prediction.

Prediction confirmed

The present experiment bombarded tin isotopes with high-energy protons and detected and identified the scattered protons as well as knocked-out helium nuclei. Dr. Junki Tanaka and Dr. Yang Zaihong could demonstrate that the reaction occurs as a direct “quasi-elastic” scattering of the protons off preformed helium nuclei in the surface of tin nuclei. The extracted cross sections for different tin isotopes reveal a decrease of the formation probability with the neutron excess of the nuclei, which impressively confirms the theoretical prediction.

This new finding, which has far-reaching consequences for our understanding of nuclei and nuclear matter, will now be studied in more detail in experimental programs planned at RCNP, and in inverse kinematics at RIKEN and the new FAIR facility at GSI, where also unstable heavy neutron-rich nuclei are accessible.

Source: Technical University of Darmstadt

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Next Post

National Research Nuclear University MEPhI initiates the creation of three consortiums in Russia

Sun Jan 17 , 2021
MEPhI initiated the creation of three consortiums: “Cosmic rays and elementary particles”, “Breakthrough nanoscale and nuclear medical technologies”, and the Consortium for the development of new generation nuclear energy technologies. MEPhI Institute of Engineering Physics for Biomedicine consolidated several leading Russian institutions at once that successfully solving the problems of […]

European Higher Education Organization is a public organization carrying out academic, educational and information activities on higher education in Europe.

The EHEO general plan stresses that:

  • Higher education systems require adequate funding and, as an investment in economic growth, public spending in higher education should be protected.
  • The challenges faced by higher education require more flexible governance and funding systems, which balance greater autonomy for education institutions with accountability to stakeholders.

Thus, EHEO plans:

  • improve academic and scientific interaction of universities;
  • protect the interests of universities;
  • interact more closely with public authorities of European countries;
  • popularize European higher education in the world;
  • develop academic mobility;
  • seek funding for European universities.