New theory about spread of antibiotic resistance

Pathogenic bacteria in humans are developing resistance to antibiotics much faster than expected. Now, computational research at Chalmers shows that one reason could be significant genetic transfer between bacteria in our ecosystems and to humans. This work has also led to new tools for resistance researchers.​​According to the World Health Organisation, antibiotic resistance is one of the greatest threats to global health, food safety and development. It already causes over 33,000 deaths a year in Europe alone.

Illustration of possible ways for spreading of antibiotic resistance
Transfer of antibiotic resistance genes to pathogenic bacteria in humans may be much more boundless than previously expected.

Completely different species of bacteria can spread resistance genes to each other through plasmids – small DNA molecules where bacteria store some of their genes outside the chromosome. When two bacterial cells come into contact, they can copy plasmids to each other. This is called conjugation, and it is the most important mechanism for spreading antibiotic resistance.

“In recent years, we’ve seen that resistance genes spread to human pathogens to a much greater degree than anyone expected,” says Jan Zrimec, researcher in systems and synthetic biology at Chalmers. “Many of the genes appear to have originated in a wide array of bacterial species and environments, such as soil, water and plant bacteria.

“This has been difficult to explain, because although conjugation is very common, we’ve thought that there was a distinct limitation for which bacterial species can transfer plasmids to each other. Plasmids belong to different mobility groups, or MOB groups, so they can’t transfer between just any bacterial species.

Specific DNA regions reveal spreading potential

Zrimec has developed new methods of data analysis that show that genetic transfer may be much more boundless and widespread than previously expected. Among other things, he has developed an algorithm that can identify specific DNA regions that are necessary for conjugation – called oriT regions – in large amounts of data consisting of genetic sequences from the DNA of thousands of plasmids. The algorithm can also sort plasmids into MOB groups based on the identified oriT regions.

A hypothetical network computed in the study, where different environmental habitats are connected by plasmids carrying multiple origin of transfer regions
A hypothetical network computed in the study, where environmental habitats are connected by plasmids carrying multiple origin of transfer regions (oriT).

He has used the algorithm to explore known gene sequences from over 4,600 naturally occurring plasmids from different types of bacteria, which has not been possible to do systematically before. The results show, among other things, that:

  • The number of oriT regions may be almost eight times higher than those found with the standard method used today.
  • The number of mobile plasmids may be twice as high as previously known.
  • The number of bacterial species that have mobile plasmids may be almost twice as high as previously known.
  • Over half of these plasmids have oriT regions that match a conjugation enzyme from another plasmid that has previously been classified in a different MOB group. This means that they could be transferred by one of these plasmids that happens to be in the same bacterial cell.

The last part means that there may be transfer mechanisms between large numbers of bacterial species and environments where we previously believed there were barriers.

Depiction of conjugation; plasmid transfer between a donor cell and a recipient cell.
Depiction of conjugation; plasmid transfer between a donor cell and a recipient cell.

“These results could imply that there is a robust network for transferring plasmids between bacteria in humans, animals, plants, soil, aquatic environments and industries, to name a few,” Zrimec explains. “Resistance genes occur naturally in many different bacteria in these ecosystems, and the hypothetical network could mean that genes from all of these environments can be transferred to bacteria that cause disease in humans.

“This may be a possible reason for the rapid development of resistance in human pathogens that we have observed in recent years. Our extensive use of antibiotics selects for resistance genes, which could thus flow in from a much larger naturally occurring genetic reservoir than we previously estimated.”

May be significant for combating antibiotic resistance

The results need to be verified experimentally in the future, but the data analysis methods Zrimec developed can already be employed by many of the researchers working with antibiotic resistance in various medical and biological fields. They provide a powerful new tool for systematically mapping out the potential transferability of different plasmids.

“This has been a major limitation of the research field up to now,” Zrimec says. “I hope that the methods will be able to benefit large parts of the research into antibiotic resistance, which is an extremely interdisciplinary and fragmented area. The methods can be used for studies aiming to develop more effective limitations to antibiotic use, instructions for how antibiotics are to be used and new types of substances that can prevent the spread of resistance genes at the molecular level.”

Source: Chalmers University of Technology

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Next Post

“I have been in the academic world for 54 years now and I am still learning every day”

Mon Jan 25 , 2021
Frank van der Duijn Schouten has been interim Rector Magnificus of Erasmus University Rotterdam (EUR) since January 1, 2021. He is an experienced administrator and is known as a bridge builder. “It is quite nice to be the first in the Netherlands (as far as I know) to have been rector of […]

European Higher Education Organization is a public organization carrying out academic, educational and information activities on higher education in Europe.

The EHEO general plan stresses that:

  • Higher education systems require adequate funding and, as an investment in economic growth, public spending in higher education should be protected.
  • The challenges faced by higher education require more flexible governance and funding systems, which balance greater autonomy for education institutions with accountability to stakeholders.

Thus, EHEO plans:

  • improve academic and scientific interaction of universities;
  • protect the interests of universities;
  • interact more closely with public authorities of European countries;
  • popularize European higher education in the world;
  • develop academic mobility;
  • seek funding for European universities.