CUHK Engineering Research Team Develops Novel Ultra-dynamic Hydrogel to Promote Differentiation of Human Stem Cell and Development of Tissue Engineering Materials

1

A research team co-led by Professor Bian Liming from the Department of Biomedical Engineering, Faculty of Engineering, and Professor Wang Yi from the Department of Physics, Faculty of Science, The Chinese University of Hong Kong (CUHK) has recently developed a super dynamic cross-linked hydrogel that can promote the differentiation of human bone marrow mesenchyme stem cells (hMSCs). The research is of great significance for the development of tissue engineering repair materials. The research results have recently been published in the prestigious scientific journal Nature Communications.

The concept of tissue engineering is to develop biological materials to repair, replace and improve the damaged organs and their functions in the human body. Hydrogels are biomaterials that are cross-linked to form a 3-D network. They can be used as a carrier that mimics the human extracellular matrix, encapsulating human stem cells or the patient’s autologous cells, and be implanted into the patient’s tissue defect site so as to promote tissue repair and achieve an ideal therapeutic effect. There is more evidence to show that the surrounding environment of human cells (extracellular matrix) has high dynamic mechanical properties. It indicates that the dynamic mechanical properties of hydrogels have an important role in promoting the normal functions of the stem cells and human cells implanted in the human body.

Professor Bian Liming’s team focuses on the development of medical hydrogel engineering and is one of the teams researching the most cutting-edge hydrogel technology which has a leading position internationally. In 2017, Professor Bian’s team successfully developed a new class of supramolecular hydrogels with a super dynamic microstructure based on the natural polymer of hyaluronic acid. The hydrogels can spontaneously adjust their microstructure to effectively support the massive proliferation, rapid assembly and directional differentiation of stem cells in the three-dimensional hydrogels, thereby promoting the repair and regeneration of damaged tissues and organs.

Professor Bian explained that the supramolecular hydrogels provide an excellent three-dimensional cell culture experiment tool for basic biomedical research such as stem cells and tumour in vitro models, and can be used as an effective delivery vehicle for therapeutic cells to serve many transformational types including regenerative medicine. “Hydrogels have unique physical properties and high biocompatibility. They can mimic the components of extracellular matrix and promote the replenishment of endoprogenitor cells. As a carrier of stem cells, the gels with ultra-dynamic mechanical properties encapsulated with the cultivated stem cells can be injected into the defect site to support the spreading and directed differentiation of the cells in them. They will assist the body in self-recovery and rebuild tissues, which can provide a strong foundation for the future development of regenerative medicine.” Professor Bian added.

About CUHK Biomedical Engineering

The Department of Biomedical Engineering was established on 1 July 2017 and is the first university department of biomedical engineering in Hong Kong. The primary focus of the department is on advancing technology and innovation to solve human health problems. Its specialty covers four areas, namely, medical instrumentation and biosensors, biomedical imaging and informatics, biomaterials and regenerative medicine, and biomolecular engineering and nanomedicine. For more details about the department, please visit www.bme.cuhk.edu.hk.

Source: Chinese University of Hong Kong

One thought on “CUHK Engineering Research Team Develops Novel Ultra-dynamic Hydrogel to Promote Differentiation of Human Stem Cell and Development of Tissue Engineering Materials

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Next Post

International students in University of Bari

Tue Jun 15 , 2021
Community and non-community foreign students with a regular residence permit are admitted to this University under the same guidelines used for Italian students. For students with dual nationality one of which is Italian, the Italian nationality is valid. Students can only apply to the University if they have valid secondary […]

European Higher Education Organization is a public organization carrying out academic, educational and information activities on higher education in Europe.

The EHEO general plan stresses that:

  • Higher education systems require adequate funding and, as an investment in economic growth, public spending in higher education should be protected.
  • The challenges faced by higher education require more flexible governance and funding systems, which balance greater autonomy for education institutions with accountability to stakeholders.

Thus, EHEO plans:

  • improve academic and scientific interaction of universities;
  • protect the interests of universities;
  • interact more closely with public authorities of European countries;
  • popularize European higher education in the world;
  • develop academic mobility;
  • seek funding for European universities.